Honokiol inhibits lung tumorigenesis through inhibition of mitochondrial function.

نویسندگان

  • Jing Pan
  • Qi Zhang
  • Qian Liu
  • Steven M Komas
  • Balaraman Kalyanaraman
  • Ronald A Lubet
  • Yian Wang
  • Ming You
چکیده

Honokiol is an important bioactive compound found in the bark of Magnolia tree. It is a nonadipogenic PPARγ agonist and capable of inhibiting the growth of a variety of tumor types both in vitro and in xenograft models. However, to fully appreciate the potential chemopreventive activity of honokiol, a less artificial model system is required. To that end, this study examined the chemopreventive efficacy of honokiol in an initiation model of lung squamous cell carcinoma (SCC). This model system uses the carcinogen N-nitroso-trischloroethylurea (NTCU), which is applied topically, reliably triggering the development of SCC within 24 to 26 weeks. Administration of honokiol significantly reduced the percentage of bronchial that exhibit abnormal lung SCC histology from 24.4% bronchial in control to 11.0% bronchial in honokiol-treated group (P = 0.01) while protecting normal bronchial histology (present in 20.5% of bronchial in control group and 38.5% of bronchial in honokiol-treated group. P = 0.004). P63 staining at the SCC site confirmed the lung SCCs phenotype. In vitro studies revealed that honokiol inhibited lung SCC cells proliferation, arrested cells at the G1-S cell-cycle checkpoint, while also leading to increased apoptosis. Our study showed that interfering with mitochondrial respiration is a novel mechanism by which honokiol changed redox status in the mitochondria, triggered apoptosis, and finally leads to the inhibition of lung SCC. This novel mechanism of targeting mitochondrial suggests honokiol as a potential lung SCC chemopreventive agent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Honokiol Inhibits Non-Small Cell Lung Cancer Cell Migration by Targeting PGE2-Mediated Activation of β-Catenin Signaling

Lung cancer remains a leading cause of death due to its metastasis to distant organs. We have examined the effect of honokiol, a bioactive constituent from the Magnolia plant, on human non-small cell lung cancer (NSCLC) cell migration and the molecular mechanisms underlying this effect. Using an in vitro cell migration assay, we found that treatment of A549, H1299, H460 and H226 NSCLC cells wit...

متن کامل

Calpain/SHP-1 Interaction by Honokiol Dampening Peritoneal Dissemination of Gastric Cancer in nu/nu Mice

BACKGROUND Honokiol, a small-molecular weight natural product, has previously been reported to activate apoptosis and inhibit gastric tumorigenesis. Whether honokiol inhibits the angiogenesis and metastasis of gastric cancer cells remains unknown. METHODOLOGY/PRINCIPAL FINDINGS We tested the effects of honokiol on angiogenic activity and peritoneal dissemination using in vivo, ex vivo and in ...

متن کامل

Aerosol administration of phospho-sulindac inhibits lung tumorigenesis.

Phospho-sulindac is a sulindac derivative with promising anticancer activity in lung cancer, but its limited metabolic stability presents a major challenge for systemic therapy. We reasoned that inhalation delivery of phospho-sulindac might overcome first-pass metabolism and produce high levels of intact drug in lung tumors. Here, we developed a system for aerosolization of phospho-sulindac and...

متن کامل

Small Molecule Therapeutics Aerosol Administration of Phospho-Sulindac Inhibits Lung Tumorigenesis

Phospho-sulindac is a sulindac derivative with promising anticancer activity in lung cancer, but its limited metabolic stability presents a major challenge for systemic therapy. We reasoned that inhalation delivery of phospho-sulindac might overcome first-pass metabolism and produce high levels of intact drug in lung tumors. Here, we developed a system for aerosolization of phospho-sulindac and...

متن کامل

Honokiol inhibits U87MG human glioblastoma cell invasion

Glioblastoma is one of the most lethal and prevalent malignant human brain tumors, with aggressive proliferation and highly invasive properties. There is still no effective cure for patients with glioblastoma. Honokiol, derived from Magnolia officinalis, can cross the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB), making it a strong candidate for an effective drug ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer prevention research

دوره 7 11  شماره 

صفحات  -

تاریخ انتشار 2014